Properties

Label 7360.r
Number of curves $1$
Conductor $7360$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 7360.r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7360.r1 7360z1 \([0, 0, 0, -32, 96]\) \(-221184/115\) \(-1884160\) \([]\) \(1152\) \(-0.091496\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 7360.r1 has rank \(0\).

Complex multiplication

The elliptic curves in class 7360.r do not have complex multiplication.

Modular form 7360.2.a.r

sage: E.q_eigenform(10)
 
\(q + q^{5} + q^{7} - 3 q^{9} + 6 q^{11} - 6 q^{13} + 7 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display