Properties

Label 7360.n
Number of curves $1$
Conductor $7360$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 7360.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7360.n1 7360u1 \([0, 0, 0, 28, 86]\) \(37933056/71875\) \(-4600000\) \([]\) \(800\) \(-0.036908\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 7360.n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 7360.n do not have complex multiplication.

Modular form 7360.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{5} - q^{7} - 3 q^{9} + 2 q^{11} + 2 q^{13} + 3 q^{17} - 2 q^{19} + O(q^{20})\)  Toggle raw display