Properties

Label 7360.a
Number of curves $1$
Conductor $7360$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 7360.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7360.a1 7360q1 \([0, 0, 0, -748, -7928]\) \(-45198971136/359375\) \(-368000000\) \([]\) \(4608\) \(0.47184\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 7360.a1 has rank \(0\).

Complex multiplication

The elliptic curves in class 7360.a do not have complex multiplication.

Modular form 7360.2.a.a

sage: E.q_eigenform(10)
 
\(q - 3 q^{3} - q^{5} + 2 q^{7} + 6 q^{9} - q^{13} + 3 q^{15} + O(q^{20})\) Copy content Toggle raw display