Show commands for:
SageMath
sage: E = EllipticCurve("bu1")
sage: E.isogeny_class()
Elliptic curves in class 7350bu
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
7350.bo3 | 7350bu1 | [1, 1, 1, -4313, 67031] | [4] | 18432 | \(\Gamma_0(N)\)-optimal |
7350.bo2 | 7350bu2 | [1, 1, 1, -28813, -1843969] | [2, 2] | 36864 | |
7350.bo1 | 7350bu3 | [1, 1, 1, -457563, -119321469] | [2] | 73728 | |
7350.bo4 | 7350bu4 | [1, 1, 1, 7937, -6180469] | [2] | 73728 |
Rank
sage: E.rank()
The elliptic curves in class 7350bu have rank \(1\).
Complex multiplication
The elliptic curves in class 7350bu do not have complex multiplication.Modular form 7350.2.a.bu
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.