Properties

Label 7350.g
Number of curves 2
Conductor 7350
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("7350.g1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 7350.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
7350.g1 7350q1 [1, 1, 0, -8355, -295875] [2] 15360 \(\Gamma_0(N)\)-optimal
7350.g2 7350q2 [1, 1, 0, -3455, -633975] [2] 30720  

Rank

sage: E.rank()
 

The elliptic curves in class 7350.g have rank \(1\).

Modular form 7350.2.a.g

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} - 2q^{11} - q^{12} + 2q^{13} + q^{16} + 8q^{17} - q^{18} + 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.