Properties

Label 7350.bk
Number of curves 2
Conductor 7350
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("7350.bk1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 7350.bk

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
7350.bk1 7350bk1 [1, 0, 1, -3946, -11812] [2] 18432 \(\Gamma_0(N)\)-optimal
7350.bk2 7350bk2 [1, 0, 1, 15654, -90212] [2] 36864  

Rank

sage: E.rank()
 

The elliptic curves in class 7350.bk have rank \(0\).

Modular form 7350.2.a.bk

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + 2q^{11} + q^{12} + 6q^{13} + q^{16} + 4q^{17} - q^{18} + 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.