# Properties

 Label 7350.bk Number of curves 2 Conductor 7350 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("7350.bk1")

sage: E.isogeny_class()

## Elliptic curves in class 7350.bk

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
7350.bk1 7350bk1 [1, 0, 1, -3946, -11812]  18432 $$\Gamma_0(N)$$-optimal
7350.bk2 7350bk2 [1, 0, 1, 15654, -90212]  36864

## Rank

sage: E.rank()

The elliptic curves in class 7350.bk have rank $$0$$.

## Modular form7350.2.a.bk

sage: E.q_eigenform(10)

$$q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + 2q^{11} + q^{12} + 6q^{13} + q^{16} + 4q^{17} - q^{18} + 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 