Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-105841x+13244636\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-105841xz^2+13244636z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-137169963x+618353247078\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(188, -88\right)\)
|
$\hat{h}(P)$ | ≈ | $0.68917807682408915531347428854$ |
Torsion generators
\( \left(\frac{751}{4}, -\frac{751}{8}\right) \)
Integral points
\( \left(188, -88\right) \), \( \left(188, -100\right) \), \( \left(200, 194\right) \), \( \left(200, -394\right) \), \( \left(1244, 41888\right) \), \( \left(1244, -43132\right) \)
Invariants
Conductor: | \( 735 \) | = | $3 \cdot 5 \cdot 7^{2}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $47647845 $ | = | $3^{4} \cdot 5 \cdot 7^{6} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{1114544804970241}{405} \) | = | $3^{-4} \cdot 5^{-1} \cdot 103681^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $1.2638246830047581745263119960\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.29086960847710152197363562428\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $0.68917807682408915531347428854\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $1.2066457005662347612731199789\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 8 $ = $ 2^{2}\cdot1\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 1.6631875266485868389615839321 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 1.663187527 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.206646 \cdot 0.689178 \cdot 8}{2^2} \approx 1.663187527$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1536 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$3$ | $4$ | $I_{4}$ | Split multiplicative | -1 | 1 | 4 | 4 |
$5$ | $1$ | $I_{1}$ | Non-split multiplicative | 1 | 1 | 1 | 1 |
$7$ | $2$ | $I_0^{*}$ | Additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.48.0.121 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1439 & 0 \\ 0 & 3359 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 1471 & 2912 \\ 2310 & 1 \end{array}\right),\left(\begin{array}{rr} 421 & 2912 \\ 1876 & 2913 \end{array}\right),\left(\begin{array}{rr} 1303 & 1946 \\ 1302 & 491 \end{array}\right),\left(\begin{array}{rr} 3329 & 32 \\ 3328 & 33 \end{array}\right),\left(\begin{array}{rr} 1072 & 2905 \\ 1463 & 3186 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 798 & 1355 \end{array}\right)$.
The torsion field $K:=\Q(E[3360])$ is a degree-$23781703680$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3360\Z)$.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 735.c
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 15.a1, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/4\Z\) | 2.2.28.1-225.1-b8 |
$2$ | \(\Q(\sqrt{35}) \) | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{7}, \sqrt{10})\) | \(\Z/8\Z\) | Not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{7})\) | \(\Z/8\Z\) | Not in database |
$8$ | 8.0.9604000000.6 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.2458624000000.41 | \(\Z/8\Z\) | Not in database |
$8$ | 8.8.98344960000.1 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | 8.8.50982027264000000.11 | \(\Z/16\Z\) | Not in database |
$8$ | 8.8.50982027264000000.8 | \(\Z/16\Z\) | Not in database |
$8$ | 8.2.265831216875.6 | \(\Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/16\Z\) | Not in database |
$16$ | 16.16.2599167103947239325696000000000000.1 | \(\Z/2\Z \oplus \Z/16\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/12\Z\) | Not in database |
$16$ | deg 16 | \(\Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | split | nonsplit | add | ord | ord | ord | ord | ss | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | 4 | 2 | 1 | - | 1 | 1 | 1 | 3 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.