Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-1067x-13414\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-1067xz^2-13414z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1067x-13414\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(125, 1344)$ | $2.6095830259487437450205608741$ | $\infty$ |
| $(-19, 0)$ | $0$ | $2$ |
Integral points
\( \left(-19, 0\right) \), \((125,\pm 1344)\)
Invariants
| Conductor: | $N$ | = | \( 7280 \) | = | $2^{4} \cdot 5 \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $13045760$ | = | $2^{12} \cdot 5 \cdot 7^{2} \cdot 13 $ |
|
| j-invariant: | $j$ | = | \( \frac{32798729601}{3185} \) | = | $3^{3} \cdot 5^{-1} \cdot 7^{-2} \cdot 11^{3} \cdot 13^{-1} \cdot 97^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.40112868190846756728866065530$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.29201849865147774212857146616$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8827733875533473$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.6581399188220205$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.6095830259487437450205608741$ |
|
| Real period: | $\Omega$ | ≈ | $0.83533558072924538454383131274$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot1\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.3597551048841505675503377782 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.359755105 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.835336 \cdot 2.609583 \cdot 8}{2^2} \\ & \approx 4.359755105\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2048 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 |
| $5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.24.0.57 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7280 = 2^{4} \cdot 5 \cdot 7 \cdot 13 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 5838 & 3 \\ 4461 & 20 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 8 & 65 \end{array}\right),\left(\begin{array}{rr} 7279 & 3624 \\ 2730 & 6369 \end{array}\right),\left(\begin{array}{rr} 4161 & 16 \\ 4168 & 129 \end{array}\right),\left(\begin{array}{rr} 574 & 3 \\ 1213 & 20 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 5460 & 5461 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 166 \\ 6994 & 4115 \end{array}\right),\left(\begin{array}{rr} 7265 & 16 \\ 7264 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[7280])$ is a degree-$3246202552320$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 65 = 5 \cdot 13 \) |
| $5$ | split multiplicative | $6$ | \( 1456 = 2^{4} \cdot 7 \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 1040 = 2^{4} \cdot 5 \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 7280.o
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 455.a3, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{65}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-65}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.2.53826500.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.0.50960.1 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.46356673636000000.29 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.19307236000000.4 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.10971993760000.21 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ss | split | split | ss | split | ord | ss | ord | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | 1,3 | 2 | 2 | 1,1 | 2 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.