Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-1216658x+518284622\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-1216658xz^2+518284622z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1576788147x+24185817700110\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(582, 2431)$ | $3.0287473363198196795871054742$ | $\infty$ |
$(-5097/4, 5093/8)$ | $0$ | $2$ |
Integral points
\( \left(582, 2431\right) \), \( \left(582, -3014\right) \)
Invariants
Conductor: | $N$ | = | \( 726 \) | = | $2 \cdot 3 \cdot 11^{2}$ |
|
Discriminant: | $\Delta$ | = | $-827095137544298898$ | = | $-1 \cdot 2 \cdot 3^{2} \cdot 11^{16} $ |
|
j-invariant: | $j$ | = | \( -\frac{112427521449300721}{466873642818} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-2} \cdot 11^{-10} \cdot 482641^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2933744930757055848548635038$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0944268566765203128238917148$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0638684203296611$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $8.14500183677123$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.0287473363198196795871054742$ |
|
Real period: | $\Omega$ | ≈ | $0.28350496806891742695223647915$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.7173298337443383786694291511 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.717329834 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.283505 \cdot 3.028747 \cdot 8}{2^2} \\ & \approx 1.717329834\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 24000 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$11$ | $4$ | $I_{10}^{*}$ | additive | -1 | 2 | 16 | 10 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.5 |
$5$ | 5B.4.2 | 5.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $288$, genus $5$, and generators
$\left(\begin{array}{rr} 1301 & 20 \\ 1300 & 21 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 1080 & 971 \end{array}\right),\left(\begin{array}{rr} 119 & 1300 \\ 1190 & 1119 \end{array}\right),\left(\begin{array}{rr} 16 & 5 \\ 615 & 1306 \end{array}\right),\left(\begin{array}{rr} 881 & 20 \\ 890 & 201 \end{array}\right),\left(\begin{array}{rr} 666 & 5 \\ 385 & 46 \end{array}\right),\left(\begin{array}{rr} 1057 & 20 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$1622016000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 121 = 11^{2} \) |
$3$ | split multiplicative | $4$ | \( 242 = 2 \cdot 11^{2} \) |
$11$ | additive | $72$ | \( 6 = 2 \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 726e
consists of 4 curves linked by isogenies of
degrees dividing 10.
Twists
The minimal quadratic twist of this elliptic curve is 66c4, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.34848.1 | \(\Z/4\Z\) | not in database |
$4$ | 4.4.15125.1 | \(\Z/10\Z\) | not in database |
$8$ | 8.0.552679243776.42 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.77720518656.15 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.5021227463472.3 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.937024000000.4 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$10$ | 10.0.2641639027500000000.2 | \(\Z/10\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/20\Z\) | not in database |
$20$ | 20.0.29268930206309635090022400000000000000000000.1 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | split | ord | ord | add | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 1 | 4 | 5 | 1 | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 1 | 0 | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.