Properties

Label 7260n
Number of curves $4$
Conductor $7260$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 7260n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7260.l4 7260n1 \([0, 1, 0, 26459, 6095384]\) \(72268906496/606436875\) \(-17189438667390000\) \([2]\) \(34560\) \(1.7966\) \(\Gamma_0(N)\)-optimal
7260.l3 7260n2 \([0, 1, 0, -381916, 83523284]\) \(13584145739344/1195803675\) \(542320423497388800\) \([2]\) \(69120\) \(2.1432\)  
7260.l2 7260n3 \([0, 1, 0, -1890181, 1000400300]\) \(-26348629355659264/24169921875\) \(-685095855468750000\) \([2]\) \(103680\) \(2.3459\)  
7260.l1 7260n4 \([0, 1, 0, -30249556, 64026275300]\) \(6749703004355978704/5671875\) \(2572306572000000\) \([2]\) \(207360\) \(2.6925\)  

Rank

sage: E.rank()
 

The elliptic curves in class 7260n have rank \(0\).

Complex multiplication

The elliptic curves in class 7260n do not have complex multiplication.

Modular form 7260.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 2q^{7} + q^{9} - 2q^{13} - q^{15} - 2q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.