Show commands for:
SageMath
sage: E = EllipticCurve("n1")
sage: E.isogeny_class()
Elliptic curves in class 72450n
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
72450.c2 | 72450n1 | [1, -1, 0, -26496492, -52486625584] | [2] | 6912000 | \(\Gamma_0(N)\)-optimal |
72450.c1 | 72450n2 | [1, -1, 0, -423936492, -3359584865584] | [2] | 13824000 |
Rank
sage: E.rank()
The elliptic curves in class 72450n have rank \(1\).
Complex multiplication
The elliptic curves in class 72450n do not have complex multiplication.Modular form 72450.2.a.n
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.