Properties

Label 72450d
Number of curves $2$
Conductor $72450$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 72450d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
72450.h1 72450d1 [1, -1, 0, -3792, 77616] [2] 110592 \(\Gamma_0(N)\)-optimal
72450.h2 72450d2 [1, -1, 0, 6708, 424116] [2] 221184  

Rank

sage: E.rank()
 

The elliptic curves in class 72450d have rank \(1\).

Complex multiplication

The elliptic curves in class 72450d do not have complex multiplication.

Modular form 72450.2.a.d

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{4} - q^{7} - q^{8} - 4q^{11} + q^{14} + q^{16} + 6q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.