Show commands for:
SageMath
sage: E = EllipticCurve("c1")
sage: E.isogeny_class()
Elliptic curves in class 72450c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
72450.i2 | 72450c1 | [1, -1, 0, 318633, 75024541] | [] | 1347840 | \(\Gamma_0(N)\)-optimal |
72450.i1 | 72450c2 | [1, -1, 0, -3131367, -3339325459] | [] | 4043520 |
Rank
sage: E.rank()
The elliptic curves in class 72450c have rank \(1\).
Complex multiplication
The elliptic curves in class 72450c do not have complex multiplication.Modular form 72450.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.