Show commands for:
SageMath
sage: E = EllipticCurve("bk1")
sage: E.isogeny_class()
Elliptic curves in class 72450bk
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
72450.b4 | 72450bk1 | [1, -1, 0, 1045008, -2896035584] | [2] | 5529600 | \(\Gamma_0(N)\)-optimal |
72450.b2 | 72450bk2 | [1, -1, 0, -25198992, -46382343584] | [2] | 11059200 | |
72450.b3 | 72450bk3 | [1, -1, 0, -9434367, 79561974541] | [2] | 16588800 | |
72450.b1 | 72450bk4 | [1, -1, 0, -341210367, 2414269686541] | [2] | 33177600 |
Rank
sage: E.rank()
The elliptic curves in class 72450bk have rank \(1\).
Complex multiplication
The elliptic curves in class 72450bk do not have complex multiplication.Modular form 72450.2.a.bk
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.