Properties

Label 72450.s
Number of curves $2$
Conductor $72450$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("s1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 72450.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
72450.s1 72450k2 \([1, -1, 0, -505617, 138504041]\) \(371850068871/14812\) \(569423039062500\) \([2]\) \(675840\) \(1.9145\)  
72450.s2 72450k1 \([1, -1, 0, -33117, 1951541]\) \(104487111/18032\) \(693210656250000\) \([2]\) \(337920\) \(1.5679\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 72450.s have rank \(0\).

Complex multiplication

The elliptic curves in class 72450.s do not have complex multiplication.

Modular form 72450.2.a.s

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{7} - q^{8} + 6q^{13} + q^{14} + q^{16} + 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.