Properties

Label 7225.g
Number of curves $4$
Conductor $7225$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7225.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7225.g do not have complex multiplication.

Modular form 7225.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + 4 q^{7} - 3 q^{8} - 3 q^{9} + 2 q^{13} + 4 q^{14} - q^{16} - 3 q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 7225.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7225.g1 7225b3 \([1, -1, 0, -655217, -203975184]\) \(82483294977/17\) \(6411541765625\) \([2]\) \(36864\) \(1.8447\)  
7225.g2 7225b2 \([1, -1, 0, -41092, -3156309]\) \(20346417/289\) \(108996210015625\) \([2, 2]\) \(18432\) \(1.4981\)  
7225.g3 7225b4 \([1, -1, 0, -4967, -8538934]\) \(-35937/83521\) \(-31499904694515625\) \([2]\) \(36864\) \(1.8447\)  
7225.g4 7225b1 \([1, -1, 0, -4967, 58816]\) \(35937/17\) \(6411541765625\) \([2]\) \(9216\) \(1.1515\) \(\Gamma_0(N)\)-optimal