Properties

Label 7200.d
Number of curves $4$
Conductor $7200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7200.d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7200.d do not have complex multiplication.

Modular form 7200.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{7} + 4 q^{11} - 6 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 7200.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7200.d1 7200p3 \([0, 0, 0, -810300, 280748000]\) \(1261112198464/675\) \(31492800000000\) \([2]\) \(73728\) \(1.9197\)  
7200.d2 7200p2 \([0, 0, 0, -111675, -7996750]\) \(26410345352/10546875\) \(61509375000000000\) \([2]\) \(73728\) \(1.9197\)  
7200.d3 7200p1 \([0, 0, 0, -50925, 4335500]\) \(20034997696/455625\) \(332150625000000\) \([2, 2]\) \(36864\) \(1.5731\) \(\Gamma_0(N)\)-optimal
7200.d4 7200p4 \([0, 0, 0, 5325, 13391750]\) \(2863288/13286025\) \(-77484097800000000\) \([2]\) \(73728\) \(1.9197\)