Properties

Label 7200.bv
Number of curves $1$
Conductor $7200$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 7200.bv1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7200.bv do not have complex multiplication.

Modular form 7200.2.a.bv

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{7} + 4 q^{11} - 7 q^{13} - 4 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 7200.bv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7200.bv1 7200bx1 \([0, 0, 0, -39000, 22070000]\) \(-5624320/177147\) \(-206624260800000000\) \([]\) \(84480\) \(2.0028\) \(\Gamma_0(N)\)-optimal