Properties

Label 714.f5
Conductor 714
Discriminant 55468445663232
j-invariant \( \frac{38331145780597164097}{55468445663232} \)
CM no
Rank 0
Torsion Structure \(\Z/{8}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 1, -70244, 7127525]) # or
 
sage: E = EllipticCurve("714g1")
 
gp: E = ellinit([1, 1, 1, -70244, 7127525]) \\ or
 
gp: E = ellinit("714g1")
 
magma: E := EllipticCurve([1, 1, 1, -70244, 7127525]); // or
 
magma: E := EllipticCurve("714g1");
 

\( y^2 + x y + y = x^{3} + x^{2} - 70244 x + 7127525 \)

Mordell-Weil group structure

\(\Z/{8}\Z\)

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(165, 169\right) \)

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(157, -79\right) \), \( \left(165, 169\right) \), \( \left(165, -335\right) \), \( \left(221, 1457\right) \), \( \left(221, -1679\right) \), \( \left(669, 15793\right) \), \( \left(669, -16463\right) \)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 714 \)  =  \(2 \cdot 3 \cdot 7 \cdot 17\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(55468445663232 \)  =  \(2^{24} \cdot 3^{4} \cdot 7^{4} \cdot 17 \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{38331145780597164097}{55468445663232} \)  =  \(2^{-24} \cdot 3^{-4} \cdot 7^{-4} \cdot 17^{-1} \cdot 431^{3} \cdot 7823^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Rank: \(0\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(1\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.627569838885\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 192 \)  = \( ( 2^{3} \cdot 3 )\cdot2\cdot2^{2}\cdot1 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(8\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 714.2.a.f

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{2} - q^{3} + q^{4} - 2q^{5} - q^{6} + q^{7} + q^{8} + q^{9} - 2q^{10} + 4q^{11} - q^{12} - 2q^{13} + q^{14} + 2q^{15} + q^{16} + q^{17} + q^{18} + 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 3840
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L(E,1) \) ≈ \( 1.88270951666 \)

Local data

This elliptic curve is semistable.

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(24\) \( I_{24} \) Split multiplicative -1 1 24 24
\(3\) \(2\) \( I_{4} \) Non-split multiplicative 1 1 4 4
\(7\) \(4\) \( I_{4} \) Split multiplicative -1 1 4 4
\(17\) \(1\) \( I_{1} \) Split multiplicative -1 1 1 1

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X230e.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 7 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 8 & 1 \end{array}\right)$ and has index 96.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

Iwasawa invariants

$p$ 2 3 7 17
Reduction type split nonsplit split split
$\lambda$-invariant(s) 3 4 3 1
$\mu$-invariant(s) 0 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 714.f consists of 6 curves linked by isogenies of degrees dividing 8.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{8}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{17}) \) \(\Z/2\Z \times \Z/8\Z\) Not in database
4 4.4.53312.1 \(\Z/16\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.