Properties

Label 71094z
Number of curves $1$
Conductor $71094$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 71094z1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(17\)\(1\)
\(41\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 71094z do not have complex multiplication.

Modular form 71094.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + 3 q^{7} + q^{8} + q^{9} - q^{10} - 2 q^{11} + q^{12} - 2 q^{13} + 3 q^{14} - q^{15} + q^{16} + q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 71094z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
71094.y1 71094z1 \([1, 0, 0, -37576, 18948044]\) \(-243087455521/6287126796\) \(-151755956850198924\) \([]\) \(1036800\) \(1.9774\) \(\Gamma_0(N)\)-optimal