# Properties

 Label 71058g1 Conductor 71058 Discriminant 1279044 j-invariant $$\frac{1091772468073}{1279044}$$ CM no Rank 2 Torsion Structure $$\mathrm{Trivial}$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -215, 1190]); // or

magma: E := EllipticCurve("71058g1");

sage: E = EllipticCurve([1, 0, 1, -215, 1190]) # or

sage: E = EllipticCurve("71058g1")

gp: E = ellinit([1, 0, 1, -215, 1190]) \\ or

gp: E = ellinit("71058g1")

$$y^2 + x y + y = x^{3} - 215 x + 1190$$

## Mordell-Weil group structure

$$\Z^2$$

### Infinite order Mordell-Weil generators and heights

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(9, -8\right)$$ $$\left(0, 34\right)$$ $$\hat{h}(P)$$ ≈ 0.350466445845 1.78121336228

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-15, 40\right)$$, $$\left(0, 34\right)$$, $$\left(3, 22\right)$$, $$\left(8, -3\right)$$, $$\left(9, -2\right)$$, $$\left(12, 13\right)$$, $$\left(35, 174\right)$$, $$\left(377, 7128\right)$$

Note: only one of each pair $\pm P$ is listed.

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$71058$$ = $$2 \cdot 3 \cdot 13 \cdot 911$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$1279044$$ = $$2^{2} \cdot 3^{3} \cdot 13 \cdot 911$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{1091772468073}{1279044}$$ = $$2^{-2} \cdot 3^{-3} \cdot 7^{3} \cdot 13^{-1} \cdot 911^{-1} \cdot 1471^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$2$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$0.400432964516$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$2.71154491198$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$6$$  = $$2\cdot3\cdot1\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form 71058.2.a.d

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - q^{2} + q^{3} + q^{4} - 3q^{5} - q^{6} - 5q^{7} - q^{8} + q^{9} + 3q^{10} - 2q^{11} + q^{12} + q^{13} + 5q^{14} - 3q^{15} + q^{16} + q^{17} - q^{18} - 4q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 32448 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L^{(2)}(E,1)/2!$$ ≈ $$6.51475180514$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$3$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3
$$13$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$911$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 911 nonsplit split ordinary ordinary ordinary split ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary split 2 5 2 2 4 5 2 4 2 2 2 2 2 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Isogenies

This curve has no rational isogenies. Its isogeny class 71058g consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.3.35529.1 $$\Z/2\Z$$ Not in database
6 6.6.44848606340889.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.