# Properties

 Label 71058f1 Conductor 71058 Discriminant 6630564096 j-invariant $$\frac{1488142744688809}{6630564096}$$ CM no Rank 2 Torsion Structure $$\mathrm{Trivial}$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -2379, 44278]); // or

magma: E := EllipticCurve("71058f1");

sage: E = EllipticCurve([1, 0, 1, -2379, 44278]) # or

sage: E = EllipticCurve("71058f1")

gp: E = ellinit([1, 0, 1, -2379, 44278]) \\ or

gp: E = ellinit("71058f1")

$$y^2 + x y + y = x^{3} - 2379 x + 44278$$

## Mordell-Weil group structure

$$\Z^2$$

### Infinite order Mordell-Weil generators and heights

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(-46, 261\right)$$ $$\left(-1, 216\right)$$ $$\hat{h}(P)$$ ≈ 2.77879824813 0.511348017808

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-46, 261\right)$$, $$\left(-1, 216\right)$$, $$\left(26, 0\right)$$, $$\left(31, 8\right)$$, $$\left(32, 18\right)$$, $$\left(47, 168\right)$$, $$\left(104, 909\right)$$, $$\left(3359, 192984\right)$$

Note: only one of each pair $\pm P$ is listed.

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$71058$$ = $$2 \cdot 3 \cdot 13 \cdot 911$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$6630564096$$ = $$2^{8} \cdot 3^{7} \cdot 13 \cdot 911$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{1488142744688809}{6630564096}$$ = $$2^{-8} \cdot 3^{-7} \cdot 11^{3} \cdot 13^{-1} \cdot 97^{3} \cdot 107^{3} \cdot 911^{-1}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$2$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$0.466152338431$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$1.34060385365$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$14$$  = $$2\cdot7\cdot1\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form 71058.2.a.f

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + q^{13} + q^{14} - q^{15} + q^{16} - 7q^{17} - q^{18} + 2q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 60928 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L^{(2)}(E,1)/2!$$ ≈ $$8.74895869805$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{8}$$ Non-split multiplicative 1 1 8 8
$$3$$ $$7$$ $$I_{7}$$ Split multiplicative -1 1 7 7
$$13$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$911$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 911 nonsplit split ordinary ordinary ss split ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary split 2 3 2 4 2,2 3 2 2 2 2 4 2 2 2 2 3 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0

## Isogenies

This curve has no rational isogenies. Its isogeny class 71058f consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.3.35529.1 $$\Z/2\Z$$ Not in database
6 6.6.44848606340889.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.