Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-268x-1619\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-268xz^2-1619z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-4283x-107882\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Torsion generators
\( \left(-\frac{37}{4}, \frac{33}{8}\right) \)
Integral points
None
Invariants
Conductor: | \( 70 \) | = | $2 \cdot 5 \cdot 7$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $120050 $ | = | $2 \cdot 5^{2} \cdot 7^{4} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{2121328796049}{120050} \) | = | $2^{-1} \cdot 3^{3} \cdot 5^{-2} \cdot 7^{-4} \cdot 4283^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $0.038987671614636246397705984290\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.038987671614636246397705984290\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
BSD invariants
Analytic rank: | $0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $1.1803043465576622803337375426\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 4 $ = $ 1\cdot2\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L(E,1) $ ≈ $ 1.1803043465576622803337375426 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 1.180304347 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.180304 \cdot 1.000000 \cdot 4}{2^2} \approx 1.180304347$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 16 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$7$ | $2$ | $I_{4}$ | Non-split multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.58 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 56.48.0-56.v.1.8, level \( 56 = 2^{3} \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 17 & 8 \\ 12 & 33 \end{array}\right),\left(\begin{array}{rr} 49 & 8 \\ 48 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 50 & 51 \end{array}\right),\left(\begin{array}{rr} 43 & 36 \\ 26 & 13 \end{array}\right),\left(\begin{array}{rr} 24 & 1 \\ 27 & 14 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[56])$ is a degree-$64512$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/56\Z)$.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 70a
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.2.8.1-2450.1-i5 |
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | 2.0.4.1-2450.2-a4 |
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/4\Z\) | 2.0.8.1-2450.1-a4 |
$4$ | 4.2.51200.3 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | \(\Q(\zeta_{8})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.10485760000.8 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.6146560000.17 | \(\Z/8\Z\) | Not in database |
$8$ | 8.0.10070523904.5 | \(\Z/8\Z\) | Not in database |
$8$ | 8.2.52509870000.1 | \(\Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | 16.0.1622647227216566419456.8 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/12\Z\) | Not in database |
$16$ | deg 16 | \(\Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 5 | 7 |
---|---|---|---|
Reduction type | split | nonsplit | nonsplit |
$\lambda$-invariant(s) | 1 | 0 | 0 |
$\mu$-invariant(s) | 1 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.