# Properties

 Label 7056x Number of curves $4$ Conductor $7056$ CM no Rank $1$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("x1")

sage: E.isogeny_class()

## Elliptic curves in class 7056x

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
7056.bo4 7056x1 [0, 0, 0, 441, -18522] [2] 6144 $$\Gamma_0(N)$$-optimal
7056.bo3 7056x2 [0, 0, 0, -8379, -277830] [2, 2] 12288
7056.bo1 7056x3 [0, 0, 0, -131859, -18429390] [2] 24576
7056.bo2 7056x4 [0, 0, 0, -26019, 1278018] [2] 24576

## Rank

sage: E.rank()

The elliptic curves in class 7056x have rank $$1$$.

## Complex multiplication

The elliptic curves in class 7056x do not have complex multiplication.

## Modular form7056.2.a.x

sage: E.q_eigenform(10)

$$q + 2q^{5} - 4q^{11} - 2q^{13} - 6q^{17} + 8q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.