Properties

Label 705600.z1
Conductor $705600$
Discriminant $-7.403\times 10^{21}$
j-invariant \( -\frac{7620530425}{526848} \)
CM no
Rank $1$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -9893100, 12672203600])
 
gp: E = ellinit([0, 0, 0, -9893100, 12672203600])
 
magma: E := EllipticCurve([0, 0, 0, -9893100, 12672203600]);
 

\(y^2=x^3-9893100x+12672203600\)  Toggle raw display

Mordell-Weil group structure

\(\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \(\left(3290, 125440\right)\)  Toggle raw display
\(\hat{h}(P)\) ≈  $1.4663355039003540576734012687$

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\((1520,\pm 33860)\), \((3290,\pm 125440)\)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 705600 \)  =  \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(-7403226614433054720000 \)  =  \(-1 \cdot 2^{27} \cdot 3^{7} \cdot 5^{4} \cdot 7^{9} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( -\frac{7620530425}{526848} \)  =  \(-1 \cdot 2^{-9} \cdot 3^{-1} \cdot 5^{2} \cdot 7^{-3} \cdot 673^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: \(2.9472994096626879968718909800\dots\)
Stable Faltings height: \(-0.15116188418364159037117597011\dots\)

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(1.4663355039003540576734012687\dots\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.12993593527281830545358934001\dots\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 48 \)  = \( 2^{2}\cdot2\cdot3\cdot2 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(1\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 705600.2.a.z

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - 6q^{11} - q^{13} + 3q^{17} + 4q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 47775744

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 9.1454244059055272983376138324117889937 \)

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(4\) \(I_{17}^{*}\) Additive -1 6 27 9
\(3\) \(2\) \(I_1^{*}\) Additive -1 2 7 1
\(5\) \(3\) \(IV\) Additive -1 2 4 0
\(7\) \(2\) \(I_3^{*}\) Additive -1 2 9 3

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(3\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 705600.z consists of 2 curves linked by isogenies of degree 3.