Properties

Label 70560.dy
Number of curves $4$
Conductor $70560$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("dy1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 70560.dy

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
70560.dy1 70560bt4 \([0, 0, 0, -494067, -133667786]\) \(303735479048/105\) \(4610786664960\) \([2]\) \(589824\) \(1.7858\)  
70560.dy2 70560bt3 \([0, 0, 0, -64092, 3117184]\) \(82881856/36015\) \(12651998608650240\) \([2]\) \(589824\) \(1.7858\)  
70560.dy3 70560bt1 \([0, 0, 0, -31017, -2068976]\) \(601211584/11025\) \(60516574977600\) \([2, 2]\) \(294912\) \(1.4393\) \(\Gamma_0(N)\)-optimal
70560.dy4 70560bt2 \([0, 0, 0, -147, -6001814]\) \(-8/354375\) \(-15561404994240000\) \([2]\) \(589824\) \(1.7858\)  

Rank

sage: E.rank()
 

The elliptic curves in class 70560.dy have rank \(0\).

Complex multiplication

The elliptic curves in class 70560.dy do not have complex multiplication.

Modular form 70560.2.a.dy

sage: E.q_eigenform(10)
 
\(q + q^{5} + 4q^{11} - 6q^{13} - 6q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.