Properties

Label 7056.e
Number of curves $2$
Conductor $7056$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 7056.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7056.e1 7056be1 \([0, 0, 0, -73059, -7601566]\) \(-67645179/8\) \(-5100326977536\) \([]\) \(24192\) \(1.4639\) \(\Gamma_0(N)\)-optimal
7056.e2 7056be2 \([0, 0, 0, 9261, -23467374]\) \(189/512\) \(-237960855463919616\) \([]\) \(72576\) \(2.0132\)  

Rank

sage: E.rank()
 

The elliptic curves in class 7056.e have rank \(0\).

Complex multiplication

The elliptic curves in class 7056.e do not have complex multiplication.

Modular form 7056.2.a.e

sage: E.q_eigenform(10)
 
\(q - 3q^{5} - 3q^{11} + 2q^{13} - 6q^{17} - 2q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.