# Properties

 Label 7056.by Number of curves $2$ Conductor $7056$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("by1")

sage: E.isogeny_class()

## Elliptic curves in class 7056.by

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7056.by1 7056bd2 $$[0, 0, 0, -657531, 205242282]$$ $$-67645179/8$$ $$-3718138366623744$$ $$[]$$ $$72576$$ $$2.0132$$
7056.by2 7056bd1 $$[0, 0, 0, 1029, 869162]$$ $$189/512$$ $$-326420926562304$$ $$[]$$ $$24192$$ $$1.4639$$ $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 7056.by have rank $$0$$.

## Complex multiplication

The elliptic curves in class 7056.by do not have complex multiplication.

## Modular form7056.2.a.by

sage: E.q_eigenform(10)

$$q + 3q^{5} + 3q^{11} + 2q^{13} + 6q^{17} - 2q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 