Properties

Label 7056.bl
Number of curves $2$
Conductor $7056$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("bl1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 7056.bl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7056.bl1 7056bs2 \([0, 0, 0, -20307, 1155602]\) \(-6329617441/279936\) \(-40958336434176\) \([]\) \(16128\) \(1.3769\)  
7056.bl2 7056bs1 \([0, 0, 0, -147, -1582]\) \(-2401/6\) \(-877879296\) \([]\) \(2304\) \(0.40398\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 7056.bl have rank \(0\).

Complex multiplication

The elliptic curves in class 7056.bl do not have complex multiplication.

Modular form 7056.2.a.bl

sage: E.q_eigenform(10)
 
\(q + q^{5} + 5q^{11} - 4q^{17} + 8q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.