Properties

Label 704a
Number of curves $3$
Conductor $704$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 704a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 704a do not have complex multiplication.

Modular form 704.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 2 q^{7} - 2 q^{9} - q^{11} - 4 q^{13} - q^{15} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 704a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
704.h3 704a1 \([0, 1, 0, -1, 1]\) \(-4096/11\) \(-704\) \([]\) \(16\) \(-0.76616\) \(\Gamma_0(N)\)-optimal
704.h2 704a2 \([0, 1, 0, -41, -199]\) \(-122023936/161051\) \(-10307264\) \([]\) \(80\) \(0.038564\)  
704.h1 704a3 \([0, 1, 0, -31281, -2139919]\) \(-52893159101157376/11\) \(-704\) \([]\) \(400\) \(0.84328\)