sage:E = EllipticCurve("c1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 702.c1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1 |
13 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+2T+5T2 |
1.5.c
|
7 |
1−4T+7T2 |
1.7.ae
|
11 |
1−2T+11T2 |
1.11.ac
|
17 |
1+17T2 |
1.17.a
|
19 |
1+3T+19T2 |
1.19.d
|
23 |
1−4T+23T2 |
1.23.ae
|
29 |
1−T+29T2 |
1.29.ab
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 702.c do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 702.c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
702.c1 |
702f1 |
[1,−1,0,−648,9536] |
−1115480294811/760408064 |
−20531017728 |
[] |
660 |
0.67922
|
Γ0(N)-optimal |