Properties

Label 702.c
Number of curves 11
Conductor 702702
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 702.c1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
3311
13131+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+2T+5T2 1 + 2 T + 5 T^{2} 1.5.c
77 14T+7T2 1 - 4 T + 7 T^{2} 1.7.ae
1111 12T+11T2 1 - 2 T + 11 T^{2} 1.11.ac
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 1+3T+19T2 1 + 3 T + 19 T^{2} 1.19.d
2323 14T+23T2 1 - 4 T + 23 T^{2} 1.23.ae
2929 1T+29T2 1 - T + 29 T^{2} 1.29.ab
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 702.c do not have complex multiplication.

Modular form 702.2.a.c

Copy content sage:E.q_eigenform(10)
 
qq2+q42q5+4q7q8+2q10+2q11q134q14+q163q19+O(q20)q - q^{2} + q^{4} - 2 q^{5} + 4 q^{7} - q^{8} + 2 q^{10} + 2 q^{11} - q^{13} - 4 q^{14} + q^{16} - 3 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 702.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
702.c1 702f1 [1,1,0,648,9536][1, -1, 0, -648, 9536] 1115480294811/760408064-1115480294811/760408064 20531017728-20531017728 [][] 660660 0.679220.67922 Γ0(N)\Gamma_0(N)-optimal