Properties

Label 70.a
Number of curves $4$
Conductor $70$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("70.a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 70.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
70.a1 70a3 [1, -1, 1, -268, -1619] [2] 16  
70.a2 70a4 [1, -1, 1, -88, 317] [2] 16  
70.a3 70a2 [1, -1, 1, -18, -19] [2, 2] 8  
70.a4 70a1 [1, -1, 1, 2, -3] [4] 4 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 70.a have rank \(0\).

Modular form 70.2.a.a

sage: E.q_eigenform(10)
 
\( q + q^{2} + q^{4} - q^{5} - q^{7} + q^{8} - 3q^{9} - q^{10} + 4q^{11} - 6q^{13} - q^{14} + q^{16} + 2q^{17} - 3q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.