Show commands for:
SageMath
sage: E = EllipticCurve("fu1")
sage: E.isogeny_class()
Elliptic curves in class 69696fu
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
69696.er2 | 69696fu1 | [0, 0, 0, -17292, -875248] | [] | 73728 | \(\Gamma_0(N)\)-optimal |
69696.er1 | 69696fu2 | [0, 0, 0, -175692, 110803088] | [] | 811008 |
Rank
sage: E.rank()
The elliptic curves in class 69696fu have rank \(0\).
Complex multiplication
The elliptic curves in class 69696fu do not have complex multiplication.Modular form 69696.2.a.fu
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.