Properties

Label 69696.cb
Number of curves 4
Conductor 69696
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("69696.cb1")
sage: E.isogeny_class()

Elliptic curves in class 69696.cb

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
69696.cb1 69696gp4 [0, 0, 0, -10211916, -12548220784] 2 2949120  
69696.cb2 69696gp2 [0, 0, 0, -802956, -86994160] 4 1474560  
69696.cb3 69696gp1 [0, 0, 0, -454476, 116936336] 2 737280 \(\Gamma_0(N)\)-optimal
69696.cb4 69696gp3 [0, 0, 0, 3030324, -677319280] 2 2949120  

Rank

sage: E.rank()

The elliptic curves in class 69696.cb have rank \(0\).

Modular form 69696.2.a.cb

sage: E.q_eigenform(10)
\( q - 2q^{5} + 4q^{7} - 2q^{13} - 2q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.