Show commands:
SageMath
E = EllipticCurve("w1")
E.isogeny_class()
Elliptic curves in class 69366w
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
69366.u2 | 69366w1 | \([1, 0, 0, 430484, 453494672]\) | \(8822561460536124355391/93935597925332680704\) | \(-93935597925332680704\) | \([7]\) | \(1893360\) | \(2.5135\) | \(\Gamma_0(N)\)-optimal |
69366.u1 | 69366w2 | \([1, 0, 0, -203025076, -1113860484568]\) | \(-925492188434597796818942768449/373958095272087819200664\) | \(-373958095272087819200664\) | \([]\) | \(13253520\) | \(3.4864\) |
Rank
sage: E.rank()
The elliptic curves in class 69366w have rank \(1\).
Complex multiplication
The elliptic curves in class 69366w do not have complex multiplication.Modular form 69366.2.a.w
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.