# Properties

 Label 69366.u Number of curves 2 Conductor 69366 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("69366.u1")
sage: E.isogeny_class()

## Elliptic curves in class 69366.u

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
69366.u1 69366w2 [1, 0, 0, -203025076, -1113860484568] 1 13253520
69366.u2 69366w1 [1, 0, 0, 430484, 453494672] 7 1893360 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 69366.u have rank $$1$$.

## Modular form 69366.2.a.u

sage: E.q_eigenform(10)
$$q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} + q^{11} + q^{12} + q^{14} - q^{15} + q^{16} + 4q^{17} + q^{18} + 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 