Properties

Label 6930n4
Conductor 6930
Discriminant -132608826453327840
j-invariant \( \frac{2150235484224911}{181905111732960} \)
CM no
Rank 0
Torsion Structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, -1, 0, 24201, -17466435]); // or
magma: E := EllipticCurve("6930n4");
sage: E = EllipticCurve([1, -1, 0, 24201, -17466435]) # or
sage: E = EllipticCurve("6930n4")
gp: E = ellinit([1, -1, 0, 24201, -17466435]) \\ or
gp: E = ellinit("6930n4")

\( y^2 + x y = x^{3} - x^{2} + 24201 x - 17466435 \)

Mordell-Weil group structure

\(\Z/{2}\Z\)

Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

\( \left(\frac{915}{4}, -\frac{915}{8}\right) \)

Integral points

magma: IntegralPoints(E);
sage: E.integral_points()
None

Invariants

magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
Conductor: \( 6930 \)  =  \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
Discriminant: \(-132608826453327840 \)  =  \(-1 \cdot 2^{5} \cdot 3^{22} \cdot 5 \cdot 7^{4} \cdot 11 \)
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
j-invariant: \( \frac{2150235484224911}{181905111732960} \)  =  \(2^{-5} \cdot 3^{-16} \cdot 5^{-1} \cdot 7^{-4} \cdot 11^{-1} \cdot 337^{3} \cdot 383^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
sage: E.rank()
Rank: \(0\)
magma: Regulator(E);
sage: E.regulator()
Regulator: \(1\)
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
Real period: \(0.156255510756\)
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
Tamagawa product: \( 8 \)  = \( 1\cdot2^{2}\cdot1\cdot2\cdot1 \)
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
Torsion order: \(2\)
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
Analytic order of Ш: \(4\) (exact)

Modular invariants

Modular form 6930.2.a.l

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

\( q - q^{2} + q^{4} + q^{5} - q^{7} - q^{8} - q^{10} + q^{11} - 6q^{13} + q^{14} + q^{16} + 6q^{17} - 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
sage: E.modular_degree()
Modular degree: 81920
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar[2]/factorial(ar[1])

\( L(E,1) \) ≈ \( 1.25004408605 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)[5]
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(1\) \( I_{5} \) Non-split multiplicative 1 1 5 5
\(3\) \(4\) \( I_16^{*} \) Additive -1 2 22 16
\(5\) \(1\) \( I_{1} \) Split multiplicative -1 1 1 1
\(7\) \(2\) \( I_{4} \) Non-split multiplicative 1 1 4 4
\(11\) \(1\) \( I_{1} \) Split multiplicative -1 1 1 1

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 6.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

Iwasawa invariants

$p$ 2 3 5 7 11
Reduction type nonsplit add split nonsplit split
$\lambda$-invariant(s) 2 - 1 0 1
$\mu$-invariant(s) 2 - 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 6930n consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{-165}) \) \(\Z/4\Z\) Not in database
\(\Q(\sqrt{-110}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
\(\Q(\sqrt{6}) \) \(\Z/4\Z\) Not in database
4 \(\Q(\sqrt{6}, \sqrt{-110})\) \(\Z/2\Z \times \Z/4\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.