Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-810x+73440\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-810xz^2+73440z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-12963x+4687198\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{6}\Z\)
Torsion generators
\( \left(78, 654\right) \)
Integral points
\( \left(-48, 24\right) \), \( \left(1, 269\right) \), \( \left(1, -270\right) \), \( \left(78, 654\right) \), \( \left(78, -732\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 6930 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-2283094141020 $ | = | $-1 \cdot 2^{2} \cdot 3^{6} \cdot 5 \cdot 7^{6} \cdot 11^{3} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{80677568161}{3131816380} \) | = | $-1 \cdot 2^{-2} \cdot 5^{-1} \cdot 7^{-6} \cdot 11^{-3} \cdot 29^{3} \cdot 149^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $1.0515502659966922296004024199\dots$ | ||
Stable Faltings height: | $0.50224412166263738390277980144\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $0$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1$ | ||
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
| |||
Real period: | $0.68202081495670882708340611232\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 72 $ = $ 2\cdot2\cdot1\cdot( 2 \cdot 3 )\cdot3 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $6$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L(E,1) $ ≈ $ 1.3640416299134176541668122246 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 13824 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$3$ | $2$ | $I_0^{*}$ | Additive | -1 | 2 | 6 | 0 |
$5$ | $1$ | $I_{1}$ | Non-split multiplicative | 1 | 1 | 1 | 1 |
$7$ | $6$ | $I_{6}$ | Split multiplicative | -1 | 1 | 6 | 6 |
$11$ | $3$ | $I_{3}$ | Split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B.1.1 | 3.8.0.1 |
The image of the adelic Galois representation has level $9240$, index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 3079 & 9228 \\ 7700 & 9239 \end{array}\right),\left(\begin{array}{rr} 4239 & 2698 \\ 6566 & 5021 \end{array}\right),\left(\begin{array}{rr} 4621 & 12 \\ 6 & 73 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 9190 & 9231 \end{array}\right),\left(\begin{array}{rr} 6730 & 3 \\ 5853 & 9232 \end{array}\right),\left(\begin{array}{rr} 5281 & 12 \\ 3966 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 9229 & 12 \\ 9228 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 10 & 3 \\ 1821 & 9232 \end{array}\right)$
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 |
---|---|---|---|---|---|
Reduction type | nonsplit | add | nonsplit | split | split |
$\lambda$-invariant(s) | 4 | - | 0 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 6930h
consists of 4 curves linked by isogenies of
degrees dividing 6.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-55}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$4$ | 4.2.1552320.1 | \(\Z/12\Z\) | Not in database |
$6$ | 6.0.21870000.2 | \(\Z/3\Z \oplus \Z/6\Z\) | Not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
$8$ | 8.0.7289334581760000.309 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
$9$ | 9.3.3322925942906347470000.1 | \(\Z/18\Z\) | Not in database |
$12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/24\Z\) | Not in database |
$18$ | 18.0.45927140031672784744455457990611433118437500000000.1 | \(\Z/2\Z \oplus \Z/18\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.