Minimal Weierstrass equation
\( y^2 + x y = x^{3} - x^{2} - 426105 x + 107150665 \)
Mordell-Weil group structure
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(48, 9293\right) \) |
\(\hat{h}(P)\) | ≈ | 0.366377810967 |
Torsion generators
\( \left(\frac{1523}{4}, -\frac{1523}{8}\right) \)
Integral points
\( \left(48, 9293\right) \), \( \left(356, 515\right) \), \( \left(411, 944\right) \), \( \left(653, 10019\right) \), \( \left(1193, 35399\right) \)
Invariants
magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
|
|||||
Conductor: | \( 6930 \) | = | \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\) | ||
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
|
|||||
Discriminant: | \(1378280445876180 \) | = | \(2^{2} \cdot 3^{8} \cdot 5 \cdot 7^{2} \cdot 11^{8} \) | ||
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
|
|||||
j-invariant: | \( \frac{11736717412386894481}{1890645330420} \) | = | \(2^{-2} \cdot 3^{-2} \cdot 5^{-1} \cdot 7^{-2} \cdot 11^{-8} \cdot 23^{3} \cdot 98807^{3}\) | ||
Endomorphism ring: | \(\Z\) | (no Complex Multiplication) | |||
Sato-Tate Group: | $\mathrm{SU}(2)$ |
BSD invariants
magma: Rank(E);
sage: E.rank()
|
|||
Rank: | \(1\) | ||
magma: Regulator(E);
sage: E.regulator()
|
|||
Regulator: | \(0.366377810967\) | ||
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
|
|||
Real period: | \(0.465173107748\) | ||
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
|
|||
Tamagawa product: | \( 64 \) = \( 2\cdot2\cdot1\cdot2\cdot2^{3} \) | ||
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
|
|||
Torsion order: | \(2\) | ||
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 6930.2.a.a
magma: ModularDegree(E);
sage: E.modular_degree()
|
|||
Modular degree: | 65536 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 2.726865679 \)
Local data
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \( I_{2} \) | Non-split multiplicative | 1 | 1 | 2 | 2 |
\(3\) | \(2\) | \( I_2^{*} \) | Additive | -1 | 2 | 8 | 2 |
\(5\) | \(1\) | \( I_{1} \) | Non-split multiplicative | 1 | 1 | 1 | 1 |
\(7\) | \(2\) | \( I_{2} \) | Non-split multiplicative | 1 | 1 | 2 | 2 |
\(11\) | \(8\) | \( I_{8} \) | Split multiplicative | -1 | 1 | 8 | 8 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X36.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 12.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | nonsplit | nonsplit | split | ordinary | ordinary | ordinary | ss | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary |
$\lambda$-invariant(s) | 4 | - | 1 | 1 | 2 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class 6930g
consists of 6 curves linked by isogenies of
degrees dividing 8.
Growth of torsion in number fields
The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base-change curve |
---|---|---|---|
2 | \(\Q(\sqrt{3}) \) | \(\Z/4\Z\) | Not in database |
\(\Q(\sqrt{5}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database | |
\(\Q(\sqrt{15}) \) | \(\Z/4\Z\) | Not in database | |
4 | \(\Q(\sqrt{3}, \sqrt{14})\) | \(\Z/8\Z\) | Not in database |
\(\Q(\sqrt{3}, \sqrt{5})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database | |
\(\Q(\sqrt{3}, \sqrt{70})\) | \(\Z/8\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.