Properties

Label 6930.z3
Conductor 6930
Discriminant 2187934777222286400
j-invariant \( \frac{14351050585434661561}{3001282273281600} \)
CM no
Rank 1
Torsion Structure \(\Z/{2}\Z \times \Z/{6}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, -455648, 94718531]) # or
 
sage: E = EllipticCurve("6930ba6")
 
gp: E = ellinit([1, -1, 1, -455648, 94718531]) \\ or
 
gp: E = ellinit("6930ba6")
 
magma: E := EllipticCurve([1, -1, 1, -455648, 94718531]); // or
 
magma: E := EllipticCurve("6930ba6");
 

\( y^2 + x y + y = x^{3} - x^{2} - 455648 x + 94718531 \)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z \times \Z/{6}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \( \left(-735, 6037\right) \)
\(\hat{h}(P)\) ≈  2.022160351098361

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(237, -119\right) \), \( \left(2415, 113137\right) \)

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-735, 6037\right) \), \( \left(-735, -5303\right) \), \( \left(-489, 14401\right) \), \( \left(-489, -13913\right) \), \( \left(-357, 14731\right) \), \( \left(-357, -14375\right) \), \( \left(105, 6877\right) \), \( \left(105, -6983\right) \), \( \left(231, 1207\right) \), \( \left(231, -1439\right) \), \( \left(237, -119\right) \), \( \left(525, -263\right) \), \( \left(633, 7405\right) \), \( \left(633, -8039\right) \), \( \left(721, 11497\right) \), \( \left(721, -12219\right) \), \( \left(1645, 60777\right) \), \( \left(1645, -62423\right) \), \( \left(2415, 113137\right) \), \( \left(2415, -115553\right) \), \( \left(3955, 243267\right) \), \( \left(3955, -247223\right) \), \( \left(48153, 10541401\right) \), \( \left(48153, -10589555\right) \)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 6930 \)  =  \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(2187934777222286400 \)  =  \(2^{6} \cdot 3^{8} \cdot 5^{2} \cdot 7^{6} \cdot 11^{6} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{14351050585434661561}{3001282273281600} \)  =  \(2^{-6} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-6} \cdot 11^{-6} \cdot 31^{3} \cdot 277^{3} \cdot 283^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(2.0221603511\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.246046789001\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 1728 \)  = \( ( 2 \cdot 3 )\cdot2^{2}\cdot2\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 ) \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(12\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 6930.2.a.z

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{2} + q^{4} - q^{5} + q^{7} + q^{8} - q^{10} + q^{11} + 2q^{13} + q^{14} + q^{16} - 6q^{17} - 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 110592
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 5.97055273478 \)

Local data

This elliptic curve is not semistable.

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(6\) \( I_{6} \) Split multiplicative -1 1 6 6
\(3\) \(4\) \( I_2^{*} \) Additive -1 2 8 2
\(5\) \(2\) \( I_{2} \) Non-split multiplicative 1 1 2 2
\(7\) \(6\) \( I_{6} \) Split multiplicative -1 1 6 6
\(11\) \(6\) \( I_{6} \) Split multiplicative -1 1 6 6

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8c.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 6 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 5 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) Cs
\(3\) B.1.1

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split add nonsplit split split ordinary ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary ss
$\lambda$-invariant(s) 2 - 5 2 2 1 1 1 1,1 1 1 1 1 1 1,1
$\mu$-invariant(s) 1 - 0 0 0 0 0 0 0,0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 6930.z consists of 8 curves linked by isogenies of degrees dividing 12.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{6}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
4 \(\Q(\sqrt{-2}, \sqrt{33})\) \(\Z/2\Z \times \Z/12\Z\) Not in database
\(\Q(\sqrt{2}, \sqrt{105})\) \(\Z/2\Z \times \Z/12\Z\) Not in database
\(\Q(\sqrt{-33}, \sqrt{-105})\) \(\Z/2\Z \times \Z/12\Z\) Not in database
6 6.0.110716875.2 \(\Z/6\Z \times \Z/6\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.