Properties

Label 6930.v
Number of curves $2$
Conductor $6930$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("v1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 6930.v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6930.v1 6930s1 \([1, -1, 1, -233, 1321]\) \(51603494067/4336640\) \(117089280\) \([2]\) \(2560\) \(0.28997\) \(\Gamma_0(N)\)-optimal
6930.v2 6930s2 \([1, -1, 1, 247, 5737]\) \(61958108493/573927200\) \(-15496034400\) \([2]\) \(5120\) \(0.63655\)  

Rank

sage: E.rank()
 

The elliptic curves in class 6930.v have rank \(1\).

Complex multiplication

The elliptic curves in class 6930.v do not have complex multiplication.

Modular form 6930.2.a.v

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} - q^{7} + q^{8} - q^{10} + q^{11} + 2 q^{13} - q^{14} + q^{16} - 2 q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.