Properties

Label 6930.l
Number of curves 4
Conductor 6930
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("6930.l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 6930.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
6930.l1 6930n3 [1, -1, 0, -871479, -312918147] [2] 81920  
6930.l2 6930n2 [1, -1, 0, -54999, -4778595] [2, 2] 40960  
6930.l3 6930n1 [1, -1, 0, -8919, 225693] [2] 20480 \(\Gamma_0(N)\)-optimal
6930.l4 6930n4 [1, -1, 0, 24201, -17466435] [2] 81920  

Rank

sage: E.rank()
 

The elliptic curves in class 6930.l have rank \(0\).

Modular form 6930.2.a.l

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{4} + q^{5} - q^{7} - q^{8} - q^{10} + q^{11} - 6q^{13} + q^{14} + q^{16} + 6q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.