Properties

Label 6930.g
Number of curves 2
Conductor 6930
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("6930.g1")
sage: E.isogeny_class()

Elliptic curves in class 6930.g

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
6930.g1 6930j1 [1, -1, 0, -44955, 3679825] 2 23040 \(\Gamma_0(N)\)-optimal
6930.g2 6930j2 [1, -1, 0, -42525, 4093411] 2 46080  

Rank

sage: E.rank()

The elliptic curves in class 6930.g have rank \(0\).

Modular form 6930.2.a.g

sage: E.q_eigenform(10)
\( q - q^{2} + q^{4} - q^{5} + q^{7} - q^{8} + q^{10} + q^{11} + 4q^{13} - q^{14} + q^{16} + 4q^{17} + 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.