Properties

Label 68544.t
Number of curves $6$
Conductor $68544$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("68544.t1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 68544.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
68544.t1 68544dq6 [0, 0, 0, -7901915916, -270362650933744] [2] 47185920  
68544.t2 68544dq4 [0, 0, 0, -494809356, -4207535177200] [2, 2] 23592960  
68544.t3 68544dq5 [0, 0, 0, -168539916, -9673331343856] [2] 47185920  
68544.t4 68544dq2 [0, 0, 0, -52257036, 36541571600] [2, 2] 11796480  
68544.t5 68544dq1 [0, 0, 0, -40460556, 98935513616] [2] 5898240 \(\Gamma_0(N)\)-optimal
68544.t6 68544dq3 [0, 0, 0, 201551604, 287406031376] [2] 23592960  

Rank

sage: E.rank()
 

The elliptic curves in class 68544.t have rank \(1\).

Modular form 68544.2.a.t

sage: E.q_eigenform(10)
 
\( q - 2q^{5} - q^{7} - 4q^{11} + 2q^{13} - q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.