Properties

Label 67280g
Number of curves $4$
Conductor $67280$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 67280g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(29\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 67280g do not have complex multiplication.

Modular form 67280.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 4 q^{7} - 3 q^{9} + 4 q^{11} - 2 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 67280g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
67280.t3 67280g1 \([0, 0, 0, -1682, -24389]\) \(55296/5\) \(47585865680\) \([2]\) \(50176\) \(0.78829\) \(\Gamma_0(N)\)-optimal
67280.t2 67280g2 \([0, 0, 0, -5887, 146334]\) \(148176/25\) \(3806869254400\) \([2, 2]\) \(100352\) \(1.1349\)  
67280.t4 67280g3 \([0, 0, 0, 10933, 829226]\) \(237276/625\) \(-380686925440000\) \([2]\) \(200704\) \(1.4814\)  
67280.t1 67280g4 \([0, 0, 0, -89987, 10389714]\) \(132304644/5\) \(3045495403520\) \([2]\) \(200704\) \(1.4814\)