Properties

Label 67280.t
Number of curves 4
Conductor 67280
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("67280.t1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 67280.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
67280.t1 67280g4 [0, 0, 0, -89987, 10389714] [2] 200704  
67280.t2 67280g2 [0, 0, 0, -5887, 146334] [2, 2] 100352  
67280.t3 67280g1 [0, 0, 0, -1682, -24389] [2] 50176 \(\Gamma_0(N)\)-optimal
67280.t4 67280g3 [0, 0, 0, 10933, 829226] [2] 200704  

Rank

sage: E.rank()
 

The elliptic curves in class 67280.t have rank \(0\).

Modular form 67280.2.a.t

sage: E.q_eigenform(10)
 
\( q + q^{5} + 4q^{7} - 3q^{9} + 4q^{11} - 2q^{13} - 2q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.