Properties

Label 6720.l
Number of curves 2
Conductor 6720
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("6720.l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 6720.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
6720.l1 6720bk2 [0, -1, 0, -5481, 158025] [2] 7680  
6720.l2 6720bk1 [0, -1, 0, -336, 2646] [2] 3840 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 6720.l have rank \(0\).

Modular form 6720.2.a.l

sage: E.q_eigenform(10)
 
\( q - q^{3} - q^{5} - q^{7} + q^{9} + 6q^{11} - 4q^{13} + q^{15} + 6q^{17} + 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.