Show commands for:
SageMath
sage: E = EllipticCurve("g1")
sage: E.isogeny_class()
Elliptic curves in class 6720.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
6720.g1 | 6720a3 | [0, -1, 0, -56481, -5147775] | [2] | 12288 | |
6720.g2 | 6720a4 | [0, -1, 0, -8961, 221121] | [2] | 12288 | |
6720.g3 | 6720a2 | [0, -1, 0, -3561, -78039] | [2, 2] | 6144 | |
6720.g4 | 6720a1 | [0, -1, 0, 84, -4410] | [2] | 3072 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 6720.g have rank \(1\).
Complex multiplication
The elliptic curves in class 6720.g do not have complex multiplication.Modular form 6720.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.