Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-2764385x-1767274783\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-2764385xz^2-1767274783z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-223915212x-1289015062416\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(13021/4, 1232055/8)$ | $5.1892150980074981409547061191$ | $\infty$ |
| $(-977, 0)$ | $0$ | $2$ |
Integral points
\( \left(-977, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 66880 \) | = | $2^{6} \cdot 5 \cdot 11 \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $1341199002632192000$ | = | $2^{24} \cdot 5^{3} \cdot 11^{6} \cdot 19^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{8912089320684236569}{5116268168000} \) | = | $2^{-6} \cdot 5^{-3} \cdot 11^{-6} \cdot 19^{-2} \cdot 23^{3} \cdot 109^{3} \cdot 827^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4243358079750189429452552361$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3846150371351009788194070539$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9673933417704673$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.050160263135199$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.1892150980074981409547061191$ |
|
| Real period: | $\Omega$ | ≈ | $0.11708867037876931351674014088$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 72 $ = $ 2\cdot3\cdot( 2 \cdot 3 )\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $10.936769330432394858867525904 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.936769330 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.117089 \cdot 5.189215 \cdot 72}{2^2} \\ & \approx 10.936769330\end{aligned}$$
Modular invariants
Modular form 66880.2.a.dp
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1548288 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{14}^{*}$ | additive | 1 | 6 | 24 | 6 |
| $5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $11$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $19$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 25080 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 19 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15179 & 25068 \\ 15834 & 25007 \end{array}\right),\left(\begin{array}{rr} 20899 & 25068 \\ 20900 & 25079 \end{array}\right),\left(\begin{array}{rr} 12551 & 25068 \\ 12552 & 25067 \end{array}\right),\left(\begin{array}{rr} 9121 & 12 \\ 4566 & 73 \end{array}\right),\left(\begin{array}{rr} 25069 & 25078 \\ 12590 & 12549 \end{array}\right),\left(\begin{array}{rr} 25069 & 12 \\ 25068 & 13 \end{array}\right),\left(\begin{array}{rr} 12539 & 0 \\ 0 & 25079 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 25030 & 25071 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 5235 & 1048 \\ 5198 & 1037 \end{array}\right),\left(\begin{array}{rr} 25070 & 25077 \\ 22599 & 12548 \end{array}\right)$.
The torsion field $K:=\Q(E[25080])$ is a degree-$599107829760000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/25080\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 5 \) |
| $3$ | good | $2$ | \( 1216 = 2^{6} \cdot 19 \) |
| $5$ | split multiplicative | $6$ | \( 13376 = 2^{6} \cdot 11 \cdot 19 \) |
| $11$ | split multiplicative | $12$ | \( 6080 = 2^{6} \cdot 5 \cdot 19 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 3520 = 2^{6} \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 66880bo
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 2090d4, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-6}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.0.13977920.5 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{-6})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.600519168.2 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.4884556188160000.68 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.852402698461902057197572304329598476222464000000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | split | ord | split | ord | ss | nonsplit | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 1 | 2 | 1 | 2 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 1 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.