Properties

Label 66654bc
Number of curves $1$
Conductor $66654$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bc1")
 
E.isogeny_class()
 

Elliptic curves in class 66654bc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66654.a1 66654bc1 \([1, -1, 0, 166536, 11982784]\) \(8947391/6272\) \(-358060378268492928\) \([]\) \(1391040\) \(2.0568\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 66654bc1 has rank \(0\).

Complex multiplication

The elliptic curves in class 66654bc do not have complex multiplication.

Modular form 66654.2.a.bc

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 4 q^{5} + q^{7} - q^{8} + 4 q^{10} + 2 q^{13} - q^{14} + q^{16} + 5 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display